Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90.
نویسندگان
چکیده
Hsp90, an essential eukaryotic chaperone, depends upon its intrinsic ATPase activity for function. Crystal structures of the bacterial Hsp90 homolog, HtpG, and the yeast Hsp90 reveal large domain rearrangements between the nucleotide-free and the nucleotide-bound forms. We used small-angle X-ray scattering and recently developed molecular modeling methods to characterize the solution structure of HtpG and demonstrate how it differs from known Hsp90 conformations. In addition to this HtpG conformation, we demonstrate that under physiologically relevant conditions, multiple conformations coexist in equilibrium. In solution, nucleotide-free HtpG adopts a more extended conformation than observed in the crystal, and upon the addition of AMPPNP, HtpG is in equilibrium between this open state and a closed state that is in good agreement with the yeast AMPPNP crystal structure. These studies provide a unique view of Hsp90 conformational dynamics and provide a model for the role of nucleotide in effecting conformational change.
منابع مشابه
Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands
Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the sti...
متن کاملDifferences in conformational dynamics within the Hsp90 chaperone family reveal mechanistic insights
The molecular chaperones of the Hsp90 family are essential in all eukaryotic cells. They assist late folding steps and maturation of many different proteins, called clients, that are not related in sequence or structure. Hsp90 interaction with its clients appears to be coupled to a series of conformational changes. Using hydrogen exchange mass spectrometry (HX-MS) we investigated the structural...
متن کاملStructural Analysis of E. coli hsp90 Reveals Dramatic Nucleotide-Dependent Conformational Rearrangements
In eukaryotes, the ubiquitous and abundant members of the 90 kilodalton heat-shock protein (hsp90) chaperone family facilitate the folding and conformational changes of a broad array of proteins important in cell signaling, proliferation, and survival. Here we describe the effects of nucleotides on the structure of full-length HtpG, the Escherichia coli hsp90 ortholog. By electron microscopy, t...
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملSpatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine.
The highly conserved 90 kDa heat shock protein (Hsp90) chaperones use ATP to regulate the stability and activity of many signalling molecules like protein kinases and transcription factors. Studies using crystallography, electron microscopy and small-angle X-ray scattering yielded controversial results for the conformational states that these dimeric multidomain proteins assume while progressin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Structure
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2008